翻訳と辞書
Words near each other
・ Cædwalla of Wessex
・ Cælin
・ Cæremoniale Episcoporum
・ Cæsar Bang
・ Cæsar Clement
・ Cæsar Peter Møller Boeck
・ Cèdre Gouraud Forest
・ Cèdric Gogoua
・ Cèilidh
・ Cèlia Sànchez-Mústich
・ Cèmuhî language
・ Cère
・ Cère, Landes
・ Cèsar Martinell i Brunet
・ Cèze
Céa's lemma
・ Céaux
・ Céaux-d'Allègre
・ Cébaco
・ Cébaco (corregimiento)
・ Cébazan
・ Cébazat
・ Céchi
・ Cécil von Renthe-Fink
・ Cécile
・ Cécile Argiolas
・ Cécile Aubry
・ Cécile Bayiha
・ Cécile Brunschvicg
・ Cécile Bruyère


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Céa's lemma : ウィキペディア英語版
Céa's lemma
Céa's lemma is a lemma in mathematics. It is an important tool for proving error estimates for the finite element method applied to elliptic partial differential equations.
==Lemma statement==
Let V be a real Hilbert space with the norm \|\cdot\|. Let a:V\times V\to \mathbb R be a bilinear form with the properties
* |a(v, w)| \le \gamma \|v\|\,\|w\| for some constant \gamma>0 and all v, w in V (continuity)
* a(v, v) \ge \alpha \|v\|^2 for some constant \alpha>0 and all v in V (coercivity or V-ellipticity).
Let L:V\to \mathbb R be a bounded linear operator. Consider the problem of finding an element u in V such that
: a(u, v)=L(v)\, for all v in V.\,
Consider the same problem on a finite-dimensional subspace V_h of V, so, u_h in V_h satisfies
: a(u_h, v)=L(v)\, for all v in V_h.\,
By the Lax–Milgram theorem, each of these problems has exactly one solution. Céa's lemma states that
: \|u-u_h\|\le \frac\|u-v\| for all v in V_h.
That is to say, the subspace solution u_h is "the best" approximation of u in V_h, up to the constant \gamma/\alpha.
The proof is straightforward
: \alpha\|u-u_h\|^2 \le a(u-u_h,u-u_h) = a(u-u_h,u-v) + a(u-u_h,v - u_h) = a(u-u_h,u-v)
\le \gamma\|u-u_h\|\|u-v\| for all v in V_h.
We used the a-orthogonality of u-u_h and V_h
: a(u-u_h,v) = 0, \ \forall \ v in V_h
which follows directly from V_h \subset V
: a(u, v) = L(v) = a(u_h, v) for all v in V_h.
Note: Céa's lemma holds on complex Hilbert spaces also, one then uses a sesquilinear form a(\cdot, \cdot) instead of a bilinear one. The coercivity assumption then becomes |a(v, v)| \ge \alpha \|v\|^2 for all v in V (notice the absolute value sign around a(v, v)).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Céa's lemma」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.